Hsp104 drives "protein-only" positive selection of Sup35 prion strains encoding strong [PSI(+)].

نویسندگان

  • Morgan E DeSantis
  • James Shorter
چکیده

Structurally distinct, self-templating prion "strains" can encode distinct phenotypes and amplify at different rates depending upon the environment. Indeed, prion strain ensembles can evolve in response to environmental challenges, which makes them highly challenging drug targets. It is not understood how the proteostasis network amplifies one prion strain at the expense of another. Here, we demonstrate that Hsp104 remodels the distinct intermolecular contacts of different synthetic Sup35 prion strains in a way that selectively amplifies prions encoding strong [PSI(+)] and simultaneously eliminates prions encoding weak [PSI(+)]. Hsp104 has reduced ability to fragment prions encoding weak [PSI(+)], but readily converts them to nontemplating forms. By contrast, Hsp104 readily fragments prions encoding strong [PSI(+)], but has reduced ability to eliminate their infectivity. Thus, we illuminate direct mechanisms underpinning how the proteostasis network can drive prion strain selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hsp104-Dependent Remodeling of Prion Complexes Mediates Protein-Only Inheritance

Inheritance of phenotypic traits depends on two key events: replication of the determinant of that trait and partitioning of these copies between mother and daughter cells. Although these processes are well understood for nucleic acid-based genes, the mechanisms by which protein-only or prion-based genetic elements direct phenotypic inheritance are poorly understood. Here, we report a process c...

متن کامل

Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104.

The [PSI+] determinant of Saccharomyces cerevisiae, consisting of the cytosolic translation termination factor Sup35, is a prion-type genetic element that induces an inheritable conformational change and converts the Sup35 protein into amyloid fibers. The molecular chaperone Hsp104 is required to maintain self-replication of [PSI+]. We observe in vitro that addition of catalytic amounts of Hsp1...

متن کامل

Chaperones that cure yeast artificial [PSI+] and their prion-specific effects

The [PSI(+)] nonsense-suppressor determinant of Saccharomyces cerevisiae results from the ability of Sup35 (eRF3) translation termination factor to undergo prion-like aggregation [1]. Although this process is autocatalytic, in vivo it depends on the chaperone Hsp104, whose lack or overexpression can cure [PSI(+)] [2]. Overproduction of the chaperone protein Ssb1 increased the [PSI(+)] curing by...

متن کامل

Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing.

The maintenance of [PSI], a prion-like form of the yeast release factor Sup35, requires a specific concentration of the chaperone protein Hsp104: either deletion or overexpression of Hsp104 will cure cells of [PSI]. A major puzzle of these studies was that overexpression of Hsp104 alone, from a heterologous promoter, cures cells of [PSI] very efficiently, yet the natural induction of Hsp104 wit...

متن کامل

Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP.

[PSI+] is a genetic element in yeast for which a heritable change in phenotype appears to be caused by a heritable change in the conformational state of the Sup35 protein. The inheritance of [PSI+] and the physical state of Sup35 in vivo depend on the protein chaperone Hsp104 (heat shock protein 104). Although these observations provide a strong genetic argument in support of the "protein-only"...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2012